Entrance Exam to IB Diploma Program

Subject: Mathematics

Duration: 90 min

Date: $19^{\text {th }}$ June, 2017
Group A
Name: \qquad

1. Determine the equation of the illustrated line, its sign and increase/decrease.

2. It is given parabola $f(x)=a x^{2}+2 x+c$. Determine the coefficients a and c so that the function has x-intercept $x=-2$ and passes through the point $M(3,5)$. Hence, sketch the graph of the function by showing all important features (axes intercepts, turning point, axis of symmetry). Also, determine sign of the function and intervals of increase/decrease.
3. Solve exponential equation: $3 \cdot 4^{x}+\frac{1}{3} \cdot 9^{x+2}=6 \cdot 4^{x+1}-\frac{1}{2} \cdot 9^{x+1}$.
4. If $x=0,1, y=10^{-2}$ find the value of expression: $\left(\frac{3 x^{-2} y^{3}}{2 x y^{-2}}\right)^{-2} \div \frac{4}{3}\left(\frac{y^{-3}}{x^{-1}}\right)^{3}$.
5. Determine the value of expression $\tan ^{2} \alpha+\frac{1}{\sin \alpha \cos \alpha}+\cot ^{2} \alpha$ if $\tan \alpha+\cot \alpha=3$.
6. Find the domain of the function $y=\sqrt{\log _{\frac{1}{2}} \frac{2 x+3}{x}}$.
